A vaccinia virus deletion mutant reveals the presence of additional inhibitors of NF-kappaB.
نویسندگان
چکیده
The classical nuclear factor kappa B (NF-κB) signaling pathway is an important regulator of inflammation and innate immunity that is activated by a wide variety of stimuli, including virus infection, tumor necrosis factor alpha (TNF-α), and interleukin 1β (IL-1β). Poxviruses, including vaccinia virus (VV) and ectromelia virus, encode multiple proteins that function in immune evasion. Recently, a growing number of genes encoded by poxviruses have been shown to target and disrupt the NF-κB signaling pathway. To determine if additional gene products that interfere with NF-κB signaling existed, we used a vaccinia virus deletion mutant, VV811, which is missing 55 open reading frames lacking all known inhibitors of TNF-α-induced NF-κB activation. Immunofluorescence analysis of HeLa cells treated with TNF-α and IL-1β revealed that NF-κB translocation to the nucleus was inhibited in VV811-infected cells. This was further confirmed through Western blotting of cytoplasmic and nuclear extracts for NF-κB. Additionally, VV811 infection inhibited TNF-α-induced IκBα degradation. In contrast to vaccinia virus strain Copenhagen (VVCop)-infected cells, VV811 infection resulted in the dramatic accumulation of phosphorylated IκBα. Correspondingly, coimmunoprecipitation assays demonstrated that the NF-κB-inhibitory IκBα-p65-p50 complex was intact in VV811-infected cells. Significantly, cells treated with 1-β-d-arabinofuranosylcytosine, an inhibitor of poxvirus late gene expression, demonstrated that an additional vaccinia virus late gene was involved in the stabilization of IκBα. Overall, this work indicates that unidentified inhibitors of NF-κB exist in vaccinia virus. The complex inhibition of NF-κB by vaccinia virus illustrates the importance of NF-κB activation in the antiviral response.
منابع مشابه
Insights from vaccinia virus into Toll-like receptor signalling proteins and their regulation by ubiquitin: role of IRAK-2.
TLRs (Toll-like receptors) are an important class of pathogen-sensing proteins, which signal the presence of a pathogen by activating transcription factors, such as NF-kappaB (nuclear factor kappaB). The TLR pathway to NF-kappaB activation involves multiple phosphorylation and ubiquitination events. Notably, TRAF-6 [TNF (tumour necrosis factor)-receptor-associated factor-6] Lys(63) polyubiquiti...
متن کاملInduction of apoptosis by double-stranded-RNA-dependent protein kinase (PKR) involves the alpha subunit of eukaryotic translation initiation factor 2 and NF-kappaB.
The double-stranded (ds) RNA-dependent protein kinase (PKR) is a key mediator of antiviral effects of interferon (IFN) and an active player in apoptosis induced by different stimuli. The translation initiation factor eIF-2alpha (alpha subunit of eukaryotic translation initiation factor 2) and IkappaBalpha, the inhibitor of the transcription factor NF-kappaB, have been proposed as downstream med...
متن کاملMutations in modified virus Ankara protein 183 render it a non-functional counterpart of B14, an inhibitor of nuclear factor κB activation
Vaccinia virus (VACV) encodes multiple proteins to evade host innate immunity, including B14, a virulence factor that binds to the inhibitor of kappaB kinase beta (IKKbeta) and blocks nuclear factor kappaB (NF-kappaB) activation. B14 shares 95 % amino acid identity with the 183 protein encoded by modified virus Ankara (MVA), an attenuated VACV strain being developed as a vaccine vector. To eval...
متن کاملFunctional and structural studies of the vaccinia virus virulence factor N1 reveal a Bcl-2-like anti-apoptotic protein
Vaccinia virus (VACV) encodes many immunomodulatory proteins, including inhibitors of apoptosis and modulators of innate immune signalling. VACV protein N1 is an intracellular homodimer that contributes to virus virulence and was reported to inhibit nuclear factor (NF)-kappaB signalling. However, analysis of NF-kappaB signalling in cells infected with recombinant viruses with or without the N1L...
متن کاملVaccinia Virus Inhibits NF-κB-Dependent Gene Expression Downstream of p65 Translocation
The transcription factor nuclear factor kappa light-chain enhancer of activated B cells (NF-κB) plays a critical role in host defense against viral infection by inducing the production of proinflammatory mediators and type I interferon. Consequently, viruses have evolved many mechanisms to block its activation. The poxvirus vaccinia virus (VACV) encodes numerous inhibitors of NF-κB activation t...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of virology
دوره 85 2 شماره
صفحات -
تاریخ انتشار 2011